Telegram Group & Telegram Channel
Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning - венец творения ML в играх

AlphaZero - это, конечно, хорошо, но есть проблема - Го и тем более шахматы - простые настольные игры с полной информацией. Авторы данного исследования решили покорить игру Stratego - в 10^175 раз большую игру, чем Го, и при этом с неполной информацией. На первой половине картинки можно почитать правила - сначала игроки в закрытую расставляют 12 видов фигур на поле, а затем ими ходят.

Я не большой специалист в теории игр, и глубоко осознать происходящее в статье мне не под силу. Однако, на выходных мне удалось пообщаться с анонимным экспертом по равновесию Нэша и разузнать кое-какие детали.

Итак, в ~любой игре из, скажем, 2 игроков, существует пространство пар стратегий, находящихся в равновесии - они являются максимально сильными по отношению друг к другу, и ни одну из них нельзя улучшить так, чтобы увеличить её среднюю награду. Для простоты буду называть любую из таких стратегий Нэш-оптимальной.

Смысл жизни ресёрчера в сфере игр - поиск алгоритма, строящего Нэш-оптимальную стратегию для любой игры. Результатом теоретического анализа последних лет стал алгоритм, позволяющий в играх с неполной информацией гененировать Нэш-оптимальную стратегию "разумным" образом, и он довольно близок к тому, что можно увидеть в RL. Он состоит из 3 основных блоков, повторяющихся по кругу:

1) Self-play
2) Пересчёт награды со специальным регуляризатором, позволяющий алгоритму сводить стратегию к Нэш-оптимальной
3) Применение чего-то типа Actor-Critic к полученным данным

В результате обучения, алгоритм выдаёт стратегию, занимающую 3 строчку в рейтинге игроков-людей. Учитывая сильно меньшую популярность и изученность Stratego, можно утверждать, что аспект неполной информации очень сильно просаживает способности алгоритма. Однако, результат превосходит все предыдущие, так что, за авторов остаётся лишь порадоваться.

Какое место в реальной жизни занимает такой подход? Замечу, что ни 10^300, ни 10^500, ни 10^5000 не покрывают сколько-нибудь значимой доли реального пространства состояний. Возьмём для сравнения хотя бы Starcraft - даже разделив карту на крупные клетки, каждый из десятков юнитов может быть отправлен в одну из 10000 позиций каждую секунду, тогда как игра может длиться тысячи секунд. 10^100000, уверен, суперконсервативная оценка пространства состояний этой игры.

Но самое смешное в данной ситуации не это. Дело в том, что Нэш-оптимальная стратегия играет в каждую новую игру с чистого листа - она не улучшается с каждой следующей игрой. Она уже оптимальна в том смысле, что её нельзя обыграть - она будет в среднем устойчива к тому, что может быть скрыто от неё. Но она не способна эксплуатировать соперника, используя внешние знания о нём.

Оптимальный бот не сможет быть обыгран, но человек, знающий своих человеческих соперников, будет выигрывать у них чаще, чем оптимальный бот. Чтобы бот смог обогнать человека в выигрыше других людей, ему необходимо уметь переносить весь свой предыдущий опыт в каждую игру и изменять своё поведение со временем. Это звучит так сложно, что, на мой взгляд, только meta-learned алгоритмы, эволюционирующие в среде, населённой человекоподобными стратегиями, сможет этому научиться. Но до этого нам ещё далеко.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/251
Create:
Last Update:

Mastering the Game of Stratego with Model-Free Multiagent Reinforcement Learning - венец творения ML в играх

AlphaZero - это, конечно, хорошо, но есть проблема - Го и тем более шахматы - простые настольные игры с полной информацией. Авторы данного исследования решили покорить игру Stratego - в 10^175 раз большую игру, чем Го, и при этом с неполной информацией. На первой половине картинки можно почитать правила - сначала игроки в закрытую расставляют 12 видов фигур на поле, а затем ими ходят.

Я не большой специалист в теории игр, и глубоко осознать происходящее в статье мне не под силу. Однако, на выходных мне удалось пообщаться с анонимным экспертом по равновесию Нэша и разузнать кое-какие детали.

Итак, в ~любой игре из, скажем, 2 игроков, существует пространство пар стратегий, находящихся в равновесии - они являются максимально сильными по отношению друг к другу, и ни одну из них нельзя улучшить так, чтобы увеличить её среднюю награду. Для простоты буду называть любую из таких стратегий Нэш-оптимальной.

Смысл жизни ресёрчера в сфере игр - поиск алгоритма, строящего Нэш-оптимальную стратегию для любой игры. Результатом теоретического анализа последних лет стал алгоритм, позволяющий в играх с неполной информацией гененировать Нэш-оптимальную стратегию "разумным" образом, и он довольно близок к тому, что можно увидеть в RL. Он состоит из 3 основных блоков, повторяющихся по кругу:

1) Self-play
2) Пересчёт награды со специальным регуляризатором, позволяющий алгоритму сводить стратегию к Нэш-оптимальной
3) Применение чего-то типа Actor-Critic к полученным данным

В результате обучения, алгоритм выдаёт стратегию, занимающую 3 строчку в рейтинге игроков-людей. Учитывая сильно меньшую популярность и изученность Stratego, можно утверждать, что аспект неполной информации очень сильно просаживает способности алгоритма. Однако, результат превосходит все предыдущие, так что, за авторов остаётся лишь порадоваться.

Какое место в реальной жизни занимает такой подход? Замечу, что ни 10^300, ни 10^500, ни 10^5000 не покрывают сколько-нибудь значимой доли реального пространства состояний. Возьмём для сравнения хотя бы Starcraft - даже разделив карту на крупные клетки, каждый из десятков юнитов может быть отправлен в одну из 10000 позиций каждую секунду, тогда как игра может длиться тысячи секунд. 10^100000, уверен, суперконсервативная оценка пространства состояний этой игры.

Но самое смешное в данной ситуации не это. Дело в том, что Нэш-оптимальная стратегия играет в каждую новую игру с чистого листа - она не улучшается с каждой следующей игрой. Она уже оптимальна в том смысле, что её нельзя обыграть - она будет в среднем устойчива к тому, что может быть скрыто от неё. Но она не способна эксплуатировать соперника, используя внешние знания о нём.

Оптимальный бот не сможет быть обыгран, но человек, знающий своих человеческих соперников, будет выигрывать у них чаще, чем оптимальный бот. Чтобы бот смог обогнать человека в выигрыше других людей, ему необходимо уметь переносить весь свой предыдущий опыт в каждую игру и изменять своё поведение со временем. Это звучит так сложно, что, на мой взгляд, только meta-learned алгоритмы, эволюционирующие в среде, населённой человекоподобными стратегиями, сможет этому научиться. Но до этого нам ещё далеко.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/251

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA